Worst and Average Case Time Complexity: O(n*n). Worst case occurs when array is reverse sorted.
Best Case Time Complexity: O(n). Best case occurs when array is already sorted.
Auxiliary Space: O(1)
Boundary Cases: Bubble sort takes minimum time (Order of n) when elements are already sorted.
Sorting In Place: Yes
Stable: Yes
# Python program for implementation of Bubble Sort def bubbleSort(arr): n = len(arr) # Traverse through all array elements for i in range(n): # Last i elements are already in place for j in range(0, n-i-1): # traverse the array from 0 to n-i-1 # Swap if the element found is greater # than the next element if arr[j] > arr[j+1] : arr[j], arr[j+1] = arr[j+1], arr[j] # Driver code to test above arr = [64, 34, 25, 12, 22, 11, 90] bubbleSort(arr) print ("Sorted array is:", arr)
Output: Sorted array is: [11, 12, 22, 25, 34, 64, 90]